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Computing an Arithmetic Constant Related 
to the Ring of Gaussian Integers 

By F. Gramain and M. Weber 

Abstract. We compute the analogue for Z[ i] of Euler's constant, that is 8 = limn 
where an = (?22.k6.n 1/frk2) - log n. For this purpose we give an estimate for 

rk = min{ r > 0; there exists z E C such that card(Z[i ] n iD (z, r)) > k 

and we compute a great number of values of rk. 

0. Results and Notations. Let Z[i] = (a + ib e C; a, b E Z} be the ring of 
Gaussian integers. For each integer k > 2 set 

rk = mint r > 0; there exists z e C such that card(Z[i] n Di(z, r)) > k }, 

where D(z, r) = { w e C; I w - zI < r } is the closed disk with center z and radius r. 
Clearly, this minimum is attained and a closed disk with radius rk containing at 

least k integer (i.e., Gaussian integer) points will be called a minimal disk Dk and its 
boundary rk will be called a minimal circle. It is not known whether all the minimal 
disks with index k are deduced from one another by an isometry of R2 _ C which 
stabilizes the lattice Z[i]. Nevertheless, Sections 1 and 2 deal with some properties of 
these disks. In particular, we prove in Section 2 an estimate of rk from which we 
deduce the existence of 8 = limo n - ,n where 

Sn= -logn. 
2 <k <n rk2 

This constant 8 has been introduced by D. W. Masser (cf. [7] and [5]) in the study 
of entire functions which map Z[i] into Z[i]. It is a bidimensional analogue of 
Euler's constant; it appears in a formula of the type of Stirling's formula and is 
related to the ring of Gaussian integers (see [7, Lemme 2] or [5, Proposition 3]) which 
leads to the conjecture that 8 = 1.822825 ... (cf. remark following Theorem 1 of [5]). 

As no formula for rk is known, it has been necessary, in order to evaluate 8, to 
compute a great number of values of rk with only the use of the above definition of 
rk. 

For this purpose, we have used a personal computer with a 6502 microprocessor (8 
bits, l,us) and 8 Kbytes memory. We have first developed various models in BASIC 
language which have enabled us to establish a table of the minimal disks Dk for 
k < 300 (see Appendix 3), to compute fairly good approximations of 51000 (1.80849), 
and then of 814, (1.81105: compare with the final result below!) in order to define 
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the optimal specifications of the final program. (All appendices are in the supple- 
ments section at the end of this issue.) 

Indeed, as the BASIC interpreter used floating-point rounded values with little 
known errors, it was impossible to guarantee more than 4 decimal digits for the final 
result. Then, as all computed values were rational numbers (Propositions 1 and 2) 
with easily bounded sizes, we could develop a program in 6502 code working only 
with positive fixed-point values and multiprecision routines. With this method the 
accuracy can be as good as needed and the error computation is rigorous. 

After approximately 175 hours of computation we obtained the following results 

1.e 696 1174 -tS1400 < 1.2711! 09.22 4- 

and 

21.055 212 94 < r14, < 21.055 214 02 

which, considering the estimates of Section 2 give 

1.811 447 299 < 8 < 1.897 327 117 

and the constant X0 of [7] therefore satisfies 

0.170 7339 < Xo < 0.186 0446. 

In particular, we have Xo > 1/6 (conjecture of [7]), but even if we notice that the 
lower bound for 8 is better than its upper bound, we cannot yet assert that the above 
conjecture about the value of 8 (which would lead to Xo = 1/2e = 0.183 939...) is 
reasonable. Indeed, the estimates of Section 2 allow us to see that, to obtain 8 with 
an accuracy of 10' (for n > 4), it is necessary to compute Sk for k near 50 x 103l . 
So it seems impossible, even with big recent computers, to obtain the first 4 digits of 
8, unless the algorithm of calculation of rk or the estimate of rk are improved, or 
another way of computing 8 is found. 

1. Some Properties of Minimal Disks. In this section, two simple geometrical 
properties of minimal disks are given. With the notations of Section 0 we have 

PROPOSITION 1. Let jk, with k > 3, be a minimal circle. If rk does not pass through 
(at least) 3 integer points, then rk has one diameter with integer extremities. This 
diameter is parallel to the real or imaginary axis and its length is an odd integer each of 
whose prime factors is congruent to 3 modulo 4. 

Such a minimal circle will be called exceptional. One can verify that, for 
3 < k < 1500, there is no exceptional disk. For this purpose it is sufficient to 
compute the number k of integer points belonging to the closed disk of center 1/2 
and of diameter 2r, where 2r is an odd integer whose prime factors are all congruent 
to 3 (mod 4) and satisfying 2r < 44 (according to Proposition 3). If one has r 
< (k-1)/n one compares r with rk, = minI>k rl', where 

rk= min{ r > 0; there exists z E C such that card(D(z, r) n Z[i]) = k 

and card(aD(z, r) n Z[i]) > 3} 

is given by the BASIC program of Appendix 1 or the final program. This work is 
given in full detail in Appendix 2. 
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However, there exist minimal disks 1k with k > 3, whose one diameter is the 
segment parallel to the real axis connecting 2 integer points, and with an odd length 
(for instance F22, with radius r22 = 5/2). But in each known case (k < 1500), 1k 

passes through at least 3 (therefore 6 by symmetry) integer points. Thus, it is natural 
to state the following: 

CONJECTURE. For k > 3, any minimal circle rk passes through at least 3 integer 
points. 

Proof of Proposition 1. That a minimal circle passes through at least 2 integer 
points is obvious. 

Let r be a circle passing through exactly 2 integer points a and b not on the same 
diameter. The radius r of F satisfies 2r > Ia - bI and if w denotes the center of F 
one has 

max{ l- t1; E' Z[i] n iD(w, r), D * a, D * b} = r - e < r. 

Let w' be a point inside the triangle wab lying on the perpendicular from w to [ab], 
and such that 1w - w'l < E/2. The triangle inequality shows that the closed disk with 
center w' and radius 1w' - al < r contains the same integer points as D(w, r), so F is 
not minimal. 

Let us now study the case where F has a diameter with integer extremities, for 
instance a and b. (Note that the circle F is not assumed to be minimal.) If 
b - a O R U iR, then the center w = (a + b)/2 of F belongs to 'Z[i], thus, by 
symmetry with respect to the line w + i R or w + R, the circle F passes through at 
least 4 integer points. If b - a E 2Z U 2iZ, then w E Z[i] and it is easily seen (using 
a rotation of center w and angle r/2) that F passes through at least 4 integer points. 

In the only remaining case, we can suppose that F has center 1/2 and radius 
m + 1/2 with m an integer > 1. Then, the only integer points of F are -m and 
m + 1 if and only if (2m + 1)2 is not a sum of 2 squares, i.e., (see [6, Theorem 278]) 
if the prime factors of 2m + 1 are all congruent to 3 (mod 4). Q.E.D. 

It is also possible to get more information on the position of the integer points of 
a minimal circle. 

PROPOSITION. 2. If a minimal circle passes through (at least) 3 integer points, then it 
is circumscribed to some triangle with integer vertices and angles < r/2. 

Proof. Let D be a closed disk with boundary F passing through at least 3 integer 
points and set E = F n Z[i]. Suppose that each triplet of points in E forms a 
triangle with one angle > r/2. Then the convex hull of E does not contain the 
center w of r, for otherwise, by Caratheodory's theorem (cf. [1, Vol. 3, 11.1.8.6]), the 
center w would be contained in the convex hull of 3 points of E, which would thus 
form a triangle with angles < r/2. 

Let [a, b] be the chord of F with extremities in E and maximal length: Every point 
in E is on the other side of [a, b] with respect to w. Then, it is clear that any disk 
translated from D by a vector orthogonal to [a, b] directed from w to [a, b], and 
sufficiently small, will contain all the integer points of D in its interior; thus F is not 
minimal. Q.E.D. 
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2. Estimate of rk and Existence of S. The values of rk which we computed show 
that the following upper bound is rather good. 

PROPOSITION 3. For each integer k > 2 one has rk < V(k -1)/-. 

Proof. By a classical result ([8, no. 452, p. 151] or [5, Proposition 1]), there exists a 
closed disk of radius ((k - 1)/.r)1/2 containing at least k integer points. We thus 
have r12 S (k - 1)/n. But it follows from Propositions 1 and 2 that rk2 E Q and, as 
ST is irrational, the inequality is strict. Q.E.D. 

The following lower bound for rk is a refinement of classical calculations (see, for 
instance, [4]). 

PROPOSITION 4. Let k be the number of integer points lying in a closed disk of radius 
r > 2. Then 

k <Tr2+ 2(V 2 +%+ 2)r+27- 8 o + _r_3 _ 

1 6 7 5- 2V - + 11 5/2~ 

r2 + 5 ( 8 ) 1(((5/ 4 + (6()16 - 5)). 

+ 1 (1(6 1 + 2 6 ) ) 
For r > 21, one can replace on the right-hand side (7/8)5/2 by (881/882)5/2 and 

(11/16)5/2 by (1759/1764)5/2. 

Remark. This obviously gives a lower bound, for rk. If the above result is written in 
the form k < -r2 + 2ar + f(r), it is easily seen that f is a decreasing function of r 
and we can use this inequality in the following manner: For k > ko the radius rk is 
greater than the positive root of the trinomial ITX2 + 2aX + f(p) - k, where p 
satisfies 0 < p < rk.. This lower bound is much less precise than the upper bound of 
Proposition 3 (as a matter of fact it is efficient for any disk, either minimal or not). 
Nevertheless, if k is not too big (k < 1.364 107) this lower bound is better than the 
best known results taken from the work of H. Chaix [2] on convex compact sets. 

In order to obtain Proposition 4 the following calculation will be used: 

LEMMA. The area T1 of the convex curvilinear right-angled and isosceles triangle with 
sides 1 and hypotenuse of radius of curvature r is 

1 r( - 1\1/2 r 2 F 1- 1/(2r 2))1/2 
= 2=2r2) + _- Arcsinr 
T1 2 /F ( 2r ) 2 r 

The area T2 of the convex curvilinear right-angled triangle with sides 1 and 2 and 
hypotenuse of radius of curvature r is 

T2 = 1 _ r5 (1 _ 5 
2 + r Arcsin- 5(1 5/(4r ) 

rV2 4r2 )/+r2 r~i 

Proof. This is a straightforward computation of integrals. 
Proof of Proposition 4. The closed disk D with center x + iy and radius r is the 

disjoint union of { x + iy) and of the 4 quarter disks 

Q1 {= z + in E D; ( > x,. q > y }, Q2 = iQl, Q3 = -Q1 and Q4 = -iQ. 
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FIGURE 1 

FIGuRE 2 

For each integer point belonging to Q1 (resp. Q2, resp. Q3, resp. Q4), construct 
the square with unit sides parallel to the real and imaginary axes with vertex equal to 
the above-mentioned integer point, and lying down left (resp. down right, resp. up 
right, resp. up left) as seen in Figure 1. 

Let A1b the area of the union of the squares generated by the integer points of 
Qj and let k be the number of integer points belonging to D. One has k = e + 

X1<1<.14 Aj, wheree =lif x +iy eZ[i] ande =O otherwise. 
The area Ai1i less than the sum of the area of Qjand the area of the union of the 

parts of the squares lying outside the radii bounding Qj minus the area of the union 
of curvilinear triangles whose vertices are the integer points nearest to the quarter 
circle bounding Qj, whose rectilinear sides are some sides of squares generated by 
the integer points of Qj, and whose hypotenuses are circular arcs of radius r. These 
triangles are indeed contained in D since its radius is r, and they have been hatched 
in Figure 2 relating to Ql. 

If we study separately -the case when x + iy Ei Z[iJI and its contrary, we get 
k < i'r 2+ 4r + 1 - T, where T is the area of the union of the above triangles. 

In order to bound T from below, notice that the point of the first quadrant lying 
on the circle with center 0 and radius r such that the tangent to the circle at this 
point has gradient -2 has abscissa r cos(Arctg 2) 2r/ F5 Thus if the points x + iy 
and x + 1 + iy of the first quadrant belong to the closed disk D(0, r) anxd if 
x > 2 r/ V5, then the point x + i (y + 2) also belongs to the disk. Similarly, if the 
points x + iy and x + 1 + iy of the first quadrant belong to the disk D(O, r) and if 
x > r/ x/2, then the point x + i(y + 1) also belongs to the disk. 
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Xor 

FIGURE 3 

Consider again the disk of center x + iy and radius r, and more precisely its first 
quarter Q1 (for the other quarters make a similar calculation). Any segment with 
integer extremities and length 1 contained in the interval [x + 2r/ F5, x + r] 
generates a triangle with area T2 (notation of the above lemma) contained in D. 
Similarly, any segment with integer extremities and length 1 contained in the interval 
[x + r/ V2, x + 2r/ F5 ] generates a triangle with area T1 contained in D. These 
triangles are hatched in Figure 3 and the area of their union is greater than 
(r(1 - 2/Vs) - 2)T2 + (r(2/i/F - 1/VF7) - 2) T'. 

The same calculation can be applied to the second half-quarter, exchanging x and 
y, but by Figure 3 it is easily seen that a few triangles in the neighborhood of the 
cuts x + r/ F2 and x + 2r/ V5 have been left aside. As one bounds k from above 
by an increasing function of r, one can suppose without loss of generality that D is 
minimal and thus that r2, x and y are rational numbers. 

If x + 2r/V 7 e Z, then x + r/l Z F Z, so that a triangle of area T1 and a 
triangle of area T2 can be added on either side of x + 2r/ F/ . Similarly, if x + 
r/ F2 e Z, a triangle of area T1 can be added in the neighborhood of x + r/ 42 
and another triangle of area T1 near x + 2r/ F5. If x + 2r/ V5 O Z and x + r/ /2 
O Z, then a triangle of area T1 can be added in the neighborhood of x + 2r/ /. 
Moreover, in the neighborhood of x + r/ V2, a triangle with area at least T1 can be 
added, but one must not add more than T1/2 because it can have a vertex of 
ordinate greater than y + r/ V2, and therefore it may have been taken into account 
in the computation related to the second half-quarter. This allows us to add 8 x 2 

to the lower bound for T, which becomes 

T > 8(r(1 - 2/V)-2) T2 + 8(r(2/5 - 1/2) -1/2) T'. 

Then finite expansions for T1 and T2 deduced from the lemma give the announced 
inequalities. Q.E.D. 
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If r is large enough, this upper bound for k can be improved by dividing into 3, 
4, ... parts each half-Q. eliciting triangles with areas T3i' 3/2, T4= 2,..., but, for r 
near 20, the present cutting gives the best result. 

Using the estimate for rk given by Propositions 3 and 4 we get the following 

THEOREM. The sequence 3n = (22 k-n 1/Sr) -log n is increasing and has a finite 
limit 8 as n tends to infinity. 

Proof. From rn2,1 < n/lr (Proposition 3) we deduce, for n > 2, 

8n+? -Sn > - + log n-log(n + 1) > O, n 
So sn is an increasing sequence. Proposition 4 and Euler-Maclaurin's formula (see, 
for instance, [3, Chapter IX, Section 7]) give an upper bound for 8n. Further details 
are left to the reader. Q.E.D. 

Actually, it is easy to obtain an estimate for 8 - an. Indeed, by Proposition 3, one 
has 

8 > 8n + Nlim log N +1 n 

and Euler-Maclaurin's formula enables one to estimate this limit. Similarly, one gets 
an upper bound for 8 using the lower bound for rk given by Proposition 4 for 
1401 < k < 1.364 x 107, and then the lower bound k < zTrr2 + 30.842 747 23 x r2/3 
due to H. Chaix [2] for k > 1.364 x 107. By this process, we get the estimate of 8 
given in Section 0 from the computed value of 81400 and we can see that 8 - an = 

O(n -2/3) 

3. The Computation of SN* 

(a) General Principles of the Programs. Our purpose is to compute rn for n < N (see 
the definitions of rn' and rn" following Proposition 1 in Section 1). We first compute 
rn, and to this end we consider the circumcircles of triangles with integer vertices and 
radii < /(N -l)/nr (in (b) we will explain how to restrict the number of triangles 
to be considered): We compute the number of integer points contained in the 
associated disk. 

For a given number of points n < N, the minimal radius of the studied disks 
containing exactly n integer points is memorized, and for n = N one memorizes the 
smallest radius giving at least N integer points. When all the triangles have been 
studied, for a given n, there are 3 possibilities: 

(a) Memory rn is empty (or strictly speaking contains 0). 
(/,) Memory rn contains a nonzero value. Then, either 

(/l) memories rn+t (t > 1) contain 0 or values > rn, or 

(t22) there exists a memory rn+'t (t > 1) containing a nonzero value < rn. 
Indeed, it is possible that none of the tested disks contains exactly n integer points 

(case (a) arising for n = 3, for example); it is also possible that each disk containing 
exactly n integer points has a radius greater than the radius of some disks containing 
n + t integer points (case (/32). For instance, the circumcircle of the triangle of 
vertices -1, 1 and 3i induces a disk containing n = 10 integer points and with radius 
5/3, whereas the disk centered at (1 + i)/2 and with radius 5/2 < 5/3 contains 
12 integer points). 
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It is thus necessary to alter the table of r, in order to get the increasing sequence 
rn7. For this purpose, we let n run from N - 1 to 2, and we store in the memory of 
index n the value rn" 1 contained in the memory of index n + 1 in case the memory 
of index n contains 0 or a value greater than rn" 1. Then it is sufficient to verify that 
there is no exceptional disk (cf. Section 1 and Appendix 2) and to compute 3N* 

(b) Selection of the Circles to be Considered. Our purpose is to reduce the time of 
computation by avoiding, as far as possible, repeating the computations for triangles 
deduced from one another by the isometries of R2 which stabilize the lattice of 
Gaussian integers. 

The circle considered here passes through the origin 0 and the 2 points b and 
c E Z[i] which can be picked up from different quadrants (the method used to 
construct the table in Appendix 3), or from the same quadrant. (This is the case of 
the model in Appendix 2 and of the final program which are described below). 

It is easily verified that, as the triangle Obc has angles < 7T/2, one can suppose b 
and c to be in the first quadrant. Moreover, rN < ,(N - 1)/77; thus, one can 
assume that Ibi < ici < L = 2VN/n, and, by symmetry with respect to the first 
bisector of the axes, one can suppose that arg b E ['7T/4, 7T/2]. 

The range of b = Xb + 1Yb is thus defined by 

{( b IYb ) E-Z2; ?< X b< L/42, max(l, XbL < b< 2 _ X2 

For fixed b, one has Icd > Ibi and, since the angles of the triangle Obc are < 7T/2, 
point c is on the same side as 0 with respect to the perpendicular from b to [0, b] 
whose equation is 

XbX + Yby = lb12, 

and which intersects the real axis at the point Ib12/xb. 
So, for fixed b, the range of c = xC + iyc is defined by 

(Xc Yc Ez2 <<min(L, Ib 2/x) min(lL -Yx C b > Yc 

0 if xc> ibi 
Yc > 

VIb- 2 - x2 otherwise 

and b = c (or equivalently XbYc - XcYb = 0). 

It is easily seen that the circumcircle of the triangle Obc has center x + iy and 
radius r with x = N(x)/D, y = N(y)/D and r2 = N(r2)/D2, where N(x) = yCIb12 

-YbiC12 , N(y) = xblC12 -xcib12, N(r2) = Ib12IC12 lb -c12 and D = 2(xbyC -XCYb). 

One verifies without trouble that r2 is a rational number with a denominator not 
greater than D 2/2. 

(c) Counting the Integer Points in a Disk. 
(a) Method used in the BASIC models. In the closed disk of center x + iy and 

radius r integer points belong to the straight lines parallel to the imaginary axis and 
with integer abscissa k E [x - r, x + r]. Therefore they amount to 

E (Y + /2 -(x - k)2 ]-|Y-r 2-(x -k) 2] 
x-r6k6x+r 

keZ 

where [.* denotes the integral part. 
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With respect to BASIC rounded values, a parameter - (EP in Appendix 1) has 
been introduced in order not to leave out any integer point in this counting, by 
actually considering the disk of center x + iy and radius Vr2 + E. The computation 
is valid if - is sufficiently small, and one chooses its values noticing that, from the 
denominators of x, y and r2, if the point a E Z[i] does not belong to the circle of 
center x + iy and radius r, then one has I Ia - (x + iy)I-rI > (2L2(L + 1))1-. 

Nevertheless, the BASIC computation is not strictly justified (except for N 
sufficiently small, in practice N < 500). This is the reason why the final program and 
all needed arithmetical multiprecision routines have been developed directly in 6502 
machine code. 

(,B) Method used in the final program. One computes the number of points in 
DZ[i] - D(x + iy) contained in the disk of center 0 and radius Dr (which is 
card(Z[i] nl D(x + iy, r))). 

Using an Eucidean division routine (64 bits dividend, 32 bits divisor) we compute 
the representative X1 (resp. Y1) of N(x) (resp. N(y)) modulo D belonging to [0, D[, 
and the desired number of points is 

E([| Yi + N(r2) _ X2 |D-Y + N(r2)X2) 

where the sum is taken over all X in 

{ Xe Z; X= X1 (mod D),X1 < X< N(r2)} 

U { X E Z; X D - X1 (mod D), D - X1 < X< N(r2)}. 

The routine used for the square root gives the integral part of the exact square root, 
thus we obtain an accurate result. 

(d) Values of r,-2 Memorized. 
(a) BASIC models. The computation of r,-2 = D2/N(r2) has been achieved 

with a 32 bit floating-point routine, but one does not know the sign of the error. 
(/B) Final program. It actually computes the integral part of 232r,-2= 

232D 2/N(r 2) using an Eucidean division routine (64 bit dividend, 32 bit d;Isor 
and quotient). Thus, we get an approximation of r, 2 from below with an accuracy of 
2-32. 

(e) Summation of r,j 2. 

(a) BASIC models. In view of the size of the memory the BASIC model of 
Appendix 1 has been used to compute E2<k<10 rj 2. A second similar program was 
used to compute and to add up the rk-2 for 1001 < k < 1400. 

(,/) Final program. For the same reasons mentioned above, the final program 

actually computes AN1 N2 
= 

EN1 <k<N223 2r2 (with N1 > 6 so that 232r, 2 < 232). The 
work has been achieved in 3 steps giving 

A6,500= 69 500 353 773, A501,100 0 9 453 770 216 and 

A1001,1400 4 574 912 626. 

As A2,5 = 9.232 one easily gets an approximation of a1400 with an accuracy near 1395 
ST -12-32 
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